CISD2 Gene
CDGSH iron sulfur domain 2
ALIAS SYMBOLS
Miner1
ERIS
NAF-1
Your Results
Sign InDescription
The CISD2 gene provides instructions for making a protein that is found in the outer membrane of cell structures called mitochondria. Mitochondria are involved in a wide variety of cellular activities, including energy production, chemical signaling, and regulation of cell growth and division. The exact function of the CISD2 protein is unknown, but it is thought to help keep mitochondria functioning normally.
CHROMOSOME
4
LOCATION
q24
LOCUS TYPE
gene with protein product
VARIANTS
28
Phenotypes
Wolfram syndrome is a condition that affects many of the body's systems. The hallmark features of Wolfram syndrome are high blood sugar levels resulting from a shortage of the hormone insulin (diabetes mellitus) and progressive vision loss due to degeneration of the nerves that carry information from the eyes to the brain (optic atrophy). People with Wolfram syndrome often also have pituitary gland dysfunction that results in the excretion of excessive amounts of urine (diabetes insipidus), hearing loss caused by changes in the inner ear (sensorineural deafness), urinary tract problems, reduced amounts of the sex hormone testosterone in males (hypogonadism), or neurological or psychiatric disorders.
Diabetes mellitus is typically the first symptom of Wolfram syndrome, usually diagnosed around age 6. Nearly everyone with Wolfram syndrome who develops diabetes mellitus requires insulin replacement therapy. Optic atrophy is often the next symptom to appear, usually around age 11. The first signs of optic atrophy are loss of color vision and side (peripheral) vision. Over time, the vision problems get worse, and people with optic atrophy are usually blind within approximately 8 years after signs of optic atrophy first begin.
In diabetes insipidus, the pituitary gland, which is located at the base of the brain, does not function normally. This abnormality disrupts the release of a hormone called vasopressin, which helps control the body's water balance and urine production. Approximately 70 percent of people with Wolfram syndrome have diabetes insipidus. Pituitary gland dysfunction can also cause hypogonadism in males. The lack of testosterone that occurs with hypogonadism affects growth and sexual development. About 65 percent of people with Wolfram syndrome have sensorineural deafness that can range in severity from deafness beginning at birth to mild hearing loss beginning in adolescence that worsens over time. Sixty to 90 percent of people with Wolfram syndrome have a urinary tract problem. Urinary tract problems include obstruction of the ducts between the kidneys and bladder (ureters), a large bladder that cannot empty normally (high-capacity atonal bladder), disrupted urination (bladder sphincter dyssynergia), and difficulty controlling the flow of urine (incontinence).
About 60 percent of people with Wolfram syndrome develop a neurological or psychiatric disorder, most commonly problems with balance and coordination (ataxia), typically beginning in early adulthood. Other neurological problems experienced by people with Wolfram syndrome include irregular breathing caused by the brain's inability to control breathing (central apnea), loss of the sense of smell, loss of the gag reflex, muscle spasms (myoclonus), seizures, reduced sensation in the lower extremities (peripheral neuropathy), and intellectual impairment. Psychiatric disorders associated with Wolfram syndrome include psychosis, episodes of severe depression, and impulsive and aggressive behavior.
There are two types of Wolfram syndrome with many overlapping features. The two types are differentiated by their genetic cause. In addition to the usual features of Wolfram syndrome, individuals with Wolfram syndrome type 2 have stomach or intestinal ulcers and excessive bleeding after an injury. The tendency to bleed excessively combined with the ulcers typically leads to abnormal bleeding in the gastrointestinal system. People with Wolfram syndrome type 2 do not develop diabetes insipidus.
Wolfram syndrome is often fatal by mid-adulthood due to complications from the many features of the condition, such as health problems related to diabetes mellitus or neurological problems.
Hereditary hearing loss and deafness
Nonsyndromic hearing loss is a partial or total loss of hearing that is not associated with other signs and symptoms. In contrast, syndromic hearing loss occurs with signs and symptoms affecting other parts of the body.
Nonsyndromic hearing loss can be classified in several different ways. One common way is by the condition's pattern of inheritance: autosomal dominant (DFNA), autosomal recessive (DFNB), X-linked (DFNX), or mitochondrial (which does not have a special designation). Each of these types of hearing loss includes multiple subtypes. DFNA, DFNB, and DFNX subtypes are numbered in the order in which they were first described. For example, DFNA1 was the first type of autosomal dominant nonsyndromic hearing loss to be identified.
The characteristics of nonsyndromic hearing loss vary among the different types. Hearing loss can affect one ear (unilateral) or both ears (bilateral). Degrees of hearing loss range from mild (difficulty understanding soft speech) to profound (inability to hear even very loud noises). The term "deafness" is often used to describe severe-to-profound hearing loss. Hearing loss can be stable, or it may be progressive, becoming more severe as a person gets older. Particular types of nonsyndromic hearing loss show distinctive patterns of hearing loss. For example, the loss may be more pronounced at high, middle, or low tones.
Most forms of nonsyndromic hearing loss are described as sensorineural, which means they are associated with a permanent loss of hearing caused by damage to structures in the inner ear. The inner ear processes sound and sends the information to the brain in the form of electrical nerve impulses. Less commonly, nonsyndromic hearing loss is described as conductive, meaning it results from changes in the middle ear. The middle ear contains three tiny bones that help transfer sound from the eardrum to the inner ear. Some forms of nonsyndromic hearing loss, particularly a type called DFNX2, involve changes in both the inner ear and the middle ear. This combination is called mixed hearing loss.
Depending on the type, nonsyndromic hearing loss can become apparent at any time from infancy to old age. Hearing loss that is present before a child learns to speak is classified as prelingual or congenital. Hearing loss that occurs after the development of speech is classified as postlingual.
Autosomal dominant nonsyndromic hearing loss
Autosomal dominant nonsyndromic hearing loss 6
Wolfram syndrome is a condition that affects many of the body's systems. The hallmark features of Wolfram syndrome are high blood sugar levels resulting from a shortage of the hormone insulin (diabetes mellitus) and progressive vision loss due to degeneration of the nerves that carry information from the eyes to the brain (optic atrophy). People with Wolfram syndrome often also have pituitary gland dysfunction that results in the excretion of excessive amounts of urine (diabetes insipidus), hearing loss caused by changes in the inner ear (sensorineural deafness), urinary tract problems, reduced amounts of the sex hormone testosterone in males (hypogonadism), or neurological or psychiatric disorders.
Diabetes mellitus is typically the first symptom of Wolfram syndrome, usually diagnosed around age 6. Nearly everyone with Wolfram syndrome who develops diabetes mellitus requires insulin replacement therapy. Optic atrophy is often the next symptom to appear, usually around age 11. The first signs of optic atrophy are loss of color vision and side (peripheral) vision. Over time, the vision problems get worse, and people with optic atrophy are usually blind within approximately 8 years after signs of optic atrophy first begin.
In diabetes insipidus, the pituitary gland, which is located at the base of the brain, does not function normally. This abnormality disrupts the release of a hormone called vasopressin, which helps control the body's water balance and urine production. Approximately 70 percent of people with Wolfram syndrome have diabetes insipidus. Pituitary gland dysfunction can also cause hypogonadism in males. The lack of testosterone that occurs with hypogonadism affects growth and sexual development. About 65 percent of people with Wolfram syndrome have sensorineural deafness that can range in severity from deafness beginning at birth to mild hearing loss beginning in adolescence that worsens over time. Sixty to 90 percent of people with Wolfram syndrome have a urinary tract problem. Urinary tract problems include obstruction of the ducts between the kidneys and bladder (ureters), a large bladder that cannot empty normally (high-capacity atonal bladder), disrupted urination (bladder sphincter dyssynergia), and difficulty controlling the flow of urine (incontinence).
About 60 percent of people with Wolfram syndrome develop a neurological or psychiatric disorder, most commonly problems with balance and coordination (ataxia), typically beginning in early adulthood. Other neurological problems experienced by people with Wolfram syndrome include irregular breathing caused by the brain's inability to control breathing (central apnea), loss of the sense of smell, loss of the gag reflex, muscle spasms (myoclonus), seizures, reduced sensation in the lower extremities (peripheral neuropathy), and intellectual impairment. Psychiatric disorders associated with Wolfram syndrome include psychosis, episodes of severe depression, and impulsive and aggressive behavior.
There are two types of Wolfram syndrome with many overlapping features. The two types are differentiated by their genetic cause. In addition to the usual features of Wolfram syndrome, individuals with Wolfram syndrome type 2 have stomach or intestinal ulcers and excessive bleeding after an injury. The tendency to bleed excessively combined with the ulcers typically leads to abnormal bleeding in the gastrointestinal system. People with Wolfram syndrome type 2 do not develop diabetes insipidus.
Wolfram syndrome is often fatal by mid-adulthood due to complications from the many features of the condition, such as health problems related to diabetes mellitus or neurological problems.
Nonsyndromic genetic hearing loss
Nonsyndromic hearing loss is a partial or total loss of hearing that is not associated with other signs and symptoms. In contrast, syndromic hearing loss occurs with signs and symptoms affecting other parts of the body.
Nonsyndromic hearing loss can be classified in several different ways. One common way is by the condition's pattern of inheritance: autosomal dominant (DFNA), autosomal recessive (DFNB), X-linked (DFNX), or mitochondrial (which does not have a special designation). Each of these types of hearing loss includes multiple subtypes. DFNA, DFNB, and DFNX subtypes are numbered in the order in which they were first described. For example, DFNA1 was the first type of autosomal dominant nonsyndromic hearing loss to be identified.
The characteristics of nonsyndromic hearing loss vary among the different types. Hearing loss can affect one ear (unilateral) or both ears (bilateral). Degrees of hearing loss range from mild (difficulty understanding soft speech) to profound (inability to hear even very loud noises). The term "deafness" is often used to describe severe-to-profound hearing loss. Hearing loss can be stable, or it may be progressive, becoming more severe as a person gets older. Particular types of nonsyndromic hearing loss show distinctive patterns of hearing loss. For example, the loss may be more pronounced at high, middle, or low tones.
Most forms of nonsyndromic hearing loss are described as sensorineural, which means they are associated with a permanent loss of hearing caused by damage to structures in the inner ear. The inner ear processes sound and sends the information to the brain in the form of electrical nerve impulses. Less commonly, nonsyndromic hearing loss is described as conductive, meaning it results from changes in the middle ear. The middle ear contains three tiny bones that help transfer sound from the eardrum to the inner ear. Some forms of nonsyndromic hearing loss, particularly a type called DFNX2, involve changes in both the inner ear and the middle ear. This combination is called mixed hearing loss.
Depending on the type, nonsyndromic hearing loss can become apparent at any time from infancy to old age. Hearing loss that is present before a child learns to speak is classified as prelingual or congenital. Hearing loss that occurs after the development of speech is classified as postlingual.
External Links
HGNC
Ensembl
NCBI
OMIM